A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network
نویسنده
چکیده
Due to the movement and complexity of the carbon market, traditional monoscale forecasting approaches often fail to capture its nonstationary and nonlinear properties and accurately describe its moving tendencies. In this study, a multiscale ensemble forecasting model integrating empirical mode decomposition (EMD), genetic algorithm (GA) and artificial neural network (ANN) is proposed to forecast carbon price. Firstly, the proposed model uses EMD to decompose carbon price data into several intrinsic mode functions (IMFs) and one residue. Then, the IMFs and residue are composed into a high frequency component, a low frequency component and a trend component which have similar frequency characteristics, simple components and strong regularity using the fine-to-coarse reconstruction algorithm. Finally, those three components are predicted using an ANN trained by GA, i.e., a GAANN model, and the final forecasting results can be obtained by the sum of these three forecasting results. For verification and testing, two main carbon future prices with different maturity in the European Climate Exchange (ECX) are used to test the effectiveness of the proposed multiscale ensemble forecasting model. Empirical results obtained demonstrate that the proposed multiscale ensemble forecasting model can outperform the single random walk (RW), ARIMA, ANN and GAANN models without EMD preprocessing and the ensemble ARIMA model with EMD preprocessing.
منابع مشابه
Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملOil Price Forecasting with an EMD-Based Multiscale Neural Network Learning Paradigm
In this study, a multiscale neural network learning paradigm based on empirical mode decomposition (EMD) is proposed for crude oil price prediction. In this learning paradigm, the original price series are first decomposed into various independent intrinsic mode components (IMCs) with a range of frequency scales. Then the internal correlation structures of different IMCs are explored by neural ...
متن کاملOptimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)
The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...
متن کاملFault Diagnosis Using Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Power-Based Intrinsic Mode Function Selection Algorithm
In the fault diagnosis system using empirical mode decomposition (EMD), it is important to select the intrinsic mode functions (IMFs) which contain as much fault information as possible and to alleviate the problems of mode mixing and spurious modes. An effective solution to these problems in the decomposition process can help to determine significant IMFs and to improve the performance of the ...
متن کاملAn EMD-Based Neural Network Ensemble Learning Model for World Crude Oil Spot Price Forecasting
In this study, an empirical mode decomposition (EMD) based neural network ensemble learning model is proposed for world crude oil spot price modeling and forecasting. For this purpose, the original crude oil spot price series were first decomposed into a finite and often small number of intrinsic mode functions (IMFs). Then the three-layer feed-forward neural network (FNN) model was used to mod...
متن کامل